Effizienz und Komfort werden auch in Zukunft wichtige Aspekte bei der Kaufentscheidung für ein Fahrzeug sein. Allerdings kollidieren auch bei neuen Fahrzeugkonzepten weiterhin die bekannten Maßnahmen, um Schall und Schwingungen zu verringern, mit dem Wunsch nach verbesserter Energieeffizienz durch Gewichtsreduktion. Systementwickler sind daher bei der Auslegung innovativer Fahrzeugstrukturen mit Zielkonflikten konfrontiert, auf die sie mit neuartigen Komponenten, Materialien und Entwicklungsmethoden reagieren müssen. Vibro-akustische Metamaterialien versprechen hier einen wesentlichen Beitrag. Bisher fehlt es jedoch an rechnergestützten Entwicklungsmethoden und skalierbaren, wirtschaftlichen und qualitätssicheren Produktionsprozessen. Ziel des neu gestarteten Forschungsprojektes „viaMeta“, unter Federführung der Mercedes-Benz AG und des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF, ist es deshalb, Leichtbaupotentiale zukünftiger Fahrzeuge zu erschließen und Strukturen konsequent zu verschlanken. Den sich daraus ergebenden, strukturdynamischen Herausforderungen wollen die forschenden Verbundpartner mit vibro-akustischen Metamaterialien begegnen.

Beim aktuellen Stand des Strukturleichtbaus erfolgt die Schwingungsübertragung und Schallabstrahlung im Fahrzeug maßgeblich durch flächige Strukturen und Transmissionspfade über Hilfsrahmen, Kopplungselemente und Karosserie. Diese werden überdimensioniert, mit breitbandig wirksamen Dämmmaterialien oder punktuellen Tilgern mit hoher Masse ausgestattet, um Vibrationen zu mindern oder zur Versteifung mit Stützstrukturen zu versehen. Jedoch führen diese Maßnahmen zu einer deutlichen Erhöhung des Fahrzeuggewichts. Demgegenüber stehen die Fähigkeiten von vibro-akustischen Metamaterialien.

Deutlich stärkere und breitbandigere Schall- und Schwingungsreduktion

Vibro-akustische Metamaterialien bestehen aus einer regelmäßigen, räumlichen Anordnung identischer, sehr kleiner, mechanischer Resonatoren. Durch diese Struktur können sie bei geringem zusätzlichem Gewicht in einem vorbestimmten Frequenzbereich Schwingungen stark reduzieren und damit den Zielkonflikt zwischen sehr schlanken Strukturen und optimalem Komfort entschärfen. Der geschickte Verbund erreicht gegenüber konventionellen Maßnahmen eine deutlich stärkere und breitbandigere Schall- und Schwingungsreduktion.

Aufgrund der Kleinskaligkeit der Einheitszellen lassen sich vibro-akustische Metamaterialien bei großer Design- und Gestaltungsfreiheit gut integrieren und mit im Fahrzeugbau relevanten statischen, fahrdynamischen und crashrelevanten Auslegungsanforderungen vereinbaren. Gegenüber aktiven Systemen erfordern vibro-akustische Metamaterialien keine zusätzliche Energie und werden voraussichtlich deutlich kostengünstiger sein. Die Geometrie und Größe der Einheitszelle ist von der Anwendung und vom adressierten Frequenzbereich abhängig. Zur Nutzung im Fahrzeugbau fehlen bisher anwendungsspezifische Designkonzepte, Entwurfsprozesse und Produktionsverfahren. Diese Lücke soll das Vorhaben „viaMeta“ füllen und erschließt somit Leichtbaupotentiale zukünftiger Fahrzeuge.

Basierend auf der Expertise der Partner in den Bereichen Fahrzeug- und Komponentenentwicklung, Materialentwicklung für vibro-akustische Metamaterialien, Simulation, Optimierung und Validierung wird das Konsortium die Designsystematik der Metamaterialien entwickeln und die Struktur und Wirkungsweise der Metamaterialien beschreiben. Industrie und Wissenschaftler werden gemeinsam Designkonzepte für die Anwendungsfälle auswählen sowie als physikalisch motivierte FEM-, MKS- und Systemmodelle modellieren und simulieren. Durch die Verbindung hocheffizienter Komponentenmodelle zu einer Gesamtsystemsimulation wird die ganzheitliche Optimierung des Fahrzeugs hinsichtlich Schwingungen und Akustik in der virtuellen Entwicklungsphase beschleunigt. Anhand konkreter Prototypen für reale Fahrzeuge werden die Konzepte validiert und seriennahe Produktionsverfahren erprobt.

Verbundpartner im Projekt „viaMeta“ sind die Mercedes-Benz AG, die BOGE Elastmetall GmbH, die Novicos GmbH, das Institut für Kraftfahrzeuge RWTH Aachen University (ika) und das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF.

Bild oben: Metameterial mit schwingungsmindernder Mikrostruktur aus Tilgermassen (gelb) und Steifigkeiten (blau). Grafik: Fraunhofer LBF

Von fl