Forschenden des Projekts iMulch ist es gelungen, die ersten drei Prüfkriterien zur Bestimmung von Mikroplastik im Ökosystem Boden zu etablieren. Mit ihrer Hilfe und weiteren Untersuchungen sollen die Auswirkungen von Kunststoffen in Böden wissenschaftlich greifbar gemacht werden.

Das Thema Plastikmüll ist inzwischen in allen gesellschaftlichen Debatten angekommen. Allerdings findet die Verschmutzung des Ökosystems Boden immer noch wenig Beachtung. Es stellt sich also die Frage, ob auf Böden oder Feldern (inklusive in Wasser aus Drainagesystemen) verbleibende Kunststoffe nicht ähnliche Auswirkungen auf die Umwelt haben wie z. B. Kunststoffe in Meeren, Flüssen oder Seen?

Das Problem: Bisher gibt es keine validen Messmethoden, um die Fragen zur Menge, Art oder Auswirkung von Kunstoffen auf das Ökosystem Boden zu beantworten. Daher entwickeln Wissenschaftler*innen des Projekts iMulch einen Prüfstand zur  Untersuchung von insgesamt neun Kriterien, um Kunststoffemissionen im Ökosystem Boden in Zukunft besser messen und deren Auswirkungen besser abschätzen zu können.

Die Prozessgrafik verdeutlicht das analytische Vorgehen der Forschenden. Grafik: nova Institut

Folgende Untersuchungskriterien werden im Projekt entwickelt und im Prüfstand etabliert: Identifizierung (1), Quantifizierung (2), Typisierung und Morphologiebestimmung (3), Verwitterung (4), Verbreitung (5), Anreicherung (6), Verlagerung (7), Bodenfunktion (8), Ökotoxizität (9). Inzwischen ist es Forschern des Instituts für Energie- und Umwelttechnik e. V. (IUTA) aus Duisburg, dem Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT aus Oberhausen und der Fischer GmbH aus Meerbusch gelungen, die ersten drei von neun Charakterisierungsmethoden von Mikroplastik im Ökosystem Boden zu etablieren.

Identifizierung, Quantifizierung und Typisierung

Zur Identifizierung, Quantifizierung und zur Typisierung von Mikroplastik in Böden wurden von den Forschendenn zwei Methoden etabliert: die Thermoextraktions-Desorptions-Gaschromatographie-Massenspektrometrie (TED-GC-MS) und die konfokale Raman-Mikroskopie (CRM).

Mit der TED-GC-MS kann die Menge sowie der Typ eines Polymers in Böden schnell und effizient bestimmt werden. Dafür wurden zunächst drei Kunststoffarten, Polyethylen (PE), Polybutylenadipat-terephthalat (PBAT) und Polylactid (PLA) verwendet. Für die Validierung der Messmethode wurden Bodenproben mit den verschiedenen Polymeren vermischt und hinsichtlich ihrer Wiederfindungsrate analysiert. Dabei lag die Wiederfindungsrate zwischen 90–95 Prozent für PLA/PBAT und 107–110 Prozent für PE, womit die TED-GC-MS erfolgreich für die Bestimmung von Polymeren in Böden im Prüfstand etabliert werden konnte.

Konfokales Raman-Mikroskop. Foto: FISCHER GmbH

Mit der Raman-Mikroskopie lässt sich ebenfalls der Polymertyp und zusätzlich noch die Größenverteilung und die Form der Partikel bestimmen. Allerdings ist für diese Form der Untersuchung der Partikel eine umfangreiche Probenvorbereitung notwendig, um störende Hintergrundpartikel wie Bodenbestandteile oder Pflanzenteile weitgehend zu entfernen. Dazu wird die Probe zunächst chemisch gereinigt und filtriert. Danach werden lichtmikroskopische Bilder der Filteroberflächen aufgenommen und eine softwarebasierte Partikelerkennung mithilfe kontrastbasierter Bildauswertung durchgeführt. Die Größenverteilung sowie die Form der Partikel lassen sich bereits aus diesen Daten erkennen. Um allerdings herauszufinden, ob es sich bei einem Partikel tatsächlich um ein Kunststoffteilchen handelt, also zur chemischen Identifizierung anhand der Molekülstruktur, werden die gefundenen Partikel einzeln angesteuert und ramanspektroskopisch untersucht.

Die Kombination beider Methoden ermöglicht eine massenbasierte Quantifizierung, eine eindeutige Identifizierung und die Bestimmung der Größenverteilung der Mikroplastikpartikel.

Weitere Untersuchungen geplant

Um die verbleibenden Fragen über Kunststoffe in Böden zu klären, erfoscht das Projekt iMulch auch, wie Kunststoffe im Ökosystem Boden verwittern, wie sich die Partikel im Boden verbreiten und welche Auswirkungen Kunststoffe auf Organismen, Bodenfunktion, Wässer aus Drainagesystemen und angrenzende Gewässer haben. Außerdem wird eine Ökobilanz der Umweltverträglichkeit von konventionellen und biologisch abbaubaren Folien erstellt. Ein weiterer Ansatz beschäftigt sich mit dem Upcycling von Mulchfolien durch Bakterien.

Abschließend werden aus den Ergebnissen Vermeidungs- und Substitutionsstrategien abgeleitet mit dem Ziel, Kunststoffe in der Umwelt zu reduzieren und herauszufinden, inwiefern die Zusammensetzung von Kunststofffolien für die Landwirtschaft und im Gartenbau weiter verbessert werden können. Die neuartigen Analysemethoden zur Prüfung und Bewertung von Kunststoffen in Böden kann auf alle Polymerarten angewendet werden und gibt so Aufschluss über die entstandenen Bodenbelastungen.

Projektpartner
Institut für Energie- und Umwelttechnik e.V. (IUTA), Duisburg (Koordination)

FISCHER GmbH, Meerbusch

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen

Fraunhofer-Institut für Molekularbiologie und Angewandte Ökologie (IME), Schmallenberg

RWTH Aachen, Institut für Umweltforschung (IUF)

RWTH Aachen, Institut für Angewandte Mikrobiologie (iAMB)

Assoziierte Projektpartner
Umweltbundesamt (UBA)

BASF SE, Ludwigshafen

FKuR Kunststoff GmbH, Willich

bio-nawa, Schallstadt

Förderhinweis
Das Projekt iMulch wird mit Mitteln aus dem Europäischen Fond für regionale Entwicklung (EFRE) gefördert.

Bild ganz oben: Filteroberfläche mit Bodenbestandteilen. Foto: FISCHER GmbH

 

Von fil