Um ihr Ziel der Dekarbonisierung von Rohstoffströmen zu erreichen, muss die chemische Industrie ihren Kohlenstoffbedarf aus nachhaltigen Quellen decken. Dabei hat die direkte Abscheidung von CO2 aus der Luft bislang kaum eine Rolle gespielt – vor allem wegen der hohen Investitions- und Betriebskosten. Das wollen die Partner im Projekt »Air2Chem« ändern: Sie entwickeln ein integriertes Verfahren, das den »Direct Air Capture«-Prozess mit einer elektrolytischen Konversion der grünen carbonathaltigen Absorberlösung zu Plattformrohstoffen der chemischen Industrie verbindet.
Neben Biomasse ist Kohlendioxid die relevanteste Quelle für nachhaltigen Kohlenstoff in der chemischen Industrie. Während große Teile des Bedarfs bereits durch nicht-vermeidbares und nicht-nachhaltiges CO2 aus Zementwerken, Müllverbrennungsanlagen oder Papierindustrie abgedeckt sind, ist mittelfristig eine Versorgungslücke von jährlich mindestens 190 Millionen Tonnen Kohlenstoff identifizierbar. »Direct Air Capture (DAC)« ist eine Möglichkeit, um standortunabhängig weiteres nachhaltiges Kohlendioxid für chemische Industrieprozesse zur Verfügung zu stellen. Der Nachteil: Aktuell sind Technologien zur direkten Abscheidung von CO2 aus der Luft mit hohen Investitions- und Betriebskosten verbunden und dadurch nicht wirtschaftlich.
Kombination windgetriebener DAC mit elektrolytischer Konversion
Das zu ändern ist Zielsetzung des Projektes »Air2Chem: Gepaarte Elektrosynthese von Basis- und Wertchemikalien über natürlich windgetriebene direkte CO2-Abscheidung aus Luft mittels Membran-Gas-Absorption und Carbonat-Elektrolyse«. Das Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT, CO2CirculAir B.V., die RWTH Aachen (Aachener Verfahrenstechnik, Chemische Verfahrenstechnik), die GKD – Gebr. Kufferath AG und die FXC Engineering GmbH entwickeln gemeinsam einen integrierten »Direct Air Carbon Capture and Utilization (DACCU)«-Prozess. Er kombiniert natürlich windgetriebene DAC mit einer elektrolytischen Konversion der carbonathaltigen Absorberlösung zu Plattformrohstoffen der chemischen Industrie wie Kohlenmonoxid bzw. Ethylen.
Energieeffiziente und nachhaltige Produktion
Dank dieser Verbindung werden sowohl die hohen Energiekosten für die Desorption gesenkt als auch Prozessketten im Sinne einer Prozessintensivierung vereinfacht. Gleichzeitig wird im Elektrolyseprozess ein wertschöpfender Anodenprozess integriert, der die Produktion hochpreisiger Chemikalien (z.B. Formaldehyd, Laktat, Formiat oder Flykolat) aus nachhaltig verfügbaren Plattformchemikalien (z.B. Methanol über Power-to-X-Prozesse oder Glycerin aus der Biodieselproduktion) bei einer weiteren Reduktion des Energiebedarfs im Elektrolyseprozess ermöglicht. Am Ende von »Air2Chem« soll eine Plattformtechnologie für die energieeffiziente und nachhaltige Produktion chemischer Grund- und Wertstoffe als Add-on an bestehende verfahrenstechnische Infrastrukturen in der chemischen Industrie stehen und im Technikumsmaßstab pilotiert werden.
Titelbild (v.l.): Timur Galiullin (Projektträger Jülich), Jannick Hiltrop, Kevinjeorjios Pellumbi, Kai junge Puring, Franz Bommas (alle Fraunhofer UMSICHT), Julian Neumann (RWTH Aachen), Maria Padligur (FXC Engineering GmbH), Ton Franken (CO2CirculAir B.V.), Stephanie Löschner (Projektträger Jülich), Berend ter Meulen (CO2CirculAir B.V.), Ulf-Peter Apfel (Fraunhofer UMSICHT), Dominik Herper (GKD – Gebr. Kufferath AG), Jeffrey Felix (CO2CirculAir B.V.) und Matthias Hesselmann (RWTH Aachen).